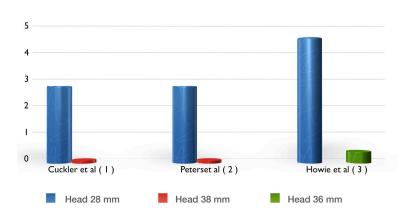

AGILIS Ti - Por[®] MONOBLOCK ACETABULAR SYSTEM



Range Of Motion and Articular Stability

Under identical conditions (acetabular diameter and design, design of the neck, etc.) the range of motion is dependent on the diameter of the articulation. A 28 mm head allows for a considerably lower ROM compared to a 48 mm head.

This theoretical data is confirmed in literature. Several publications demonstrate how the use of large diameter heads contributes to significantly reduce the risk of dislocations.

% of dislocations based on the head diameter

The need to have the largest possible ROM becomes even more important for young patients with high functional expectations.

The ideal system for young active patients must meet needs not easily reconciled with each other such as:

- Large diameter in order to maximize ROM and stability.
- Minimum bone sacrifice.
- Minimum wear of the articular surfaces.
- Maximum primary stability.
- Fast and optimal osteointegration of the implant.

Large articular diameter Minimum bone sacrifice.

AGILIS TiPor[®] cup meets these two needs thanks to its monoblock structure

The insert is pre-assembled to the metallic cup. The Titanium Alloy outer cup conforms to the shape of the insert, maximizing the contact area and at the same time submitting the internal ceramic core to circumferential compressive stresses, that further increase the mechanical strength.

This results in a thin walled, but extremely resistant, system.

The chart shows the cup/head couplings available in the AGILIS Ti-Por[®] system . The cup size 42 is able to accept a 32mm head.

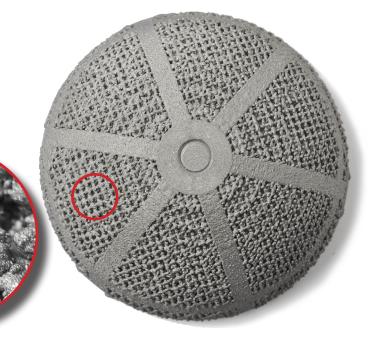
AGILIS Ti-Por [®] Cup diameter	42-44	46-48	50-52	54-56	58-66
Head Diameter	32	36	40	44	48

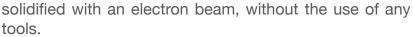
AGILIS Ti - Por®

Minimum wear of the articular surfaces.

The Ceramic / Ceramic coupling has already proved its long term reliability (4, 5, 6, 7). The excellent tribological properties and excellent biocompatibility render this coupling particularly suited for patients with high functional expectations (8).

The introduction of BIOLOX Delta ceramic has provided operators with a material that has a mechanical strength which is more than double the strength of traditional Alumina (9).


Maximum Primary Stability.


AGILIS Ti-Por[®] is characterized by a hemispherical shape, which guarantees an excellent primary stability and at the same time minimum bone sacrifice (10; 11).

The primary stability of the cup is magnified through Ti-Por[®] technology.

The primary stability of the cup is magnified through Ti-Por[®] technology. This is not a coating but a monolithic construction, which is therefore extremely stable and able to maximize the roughness of the surface.

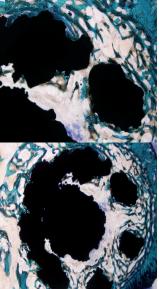
In this way we can obtain three-dimensional structures otherwise impossible to produce.

The implants are produced directly from titanium powders

(*) Data available at Adler Ortho

AGILIS Ti-Por® cup is produced using innovative powder technology that Adler Ortho first introduced in orthopae-

Powder Technology.


tion (*)

We can see a good bone growth two weeks after implanta-

Ti-Por[®] samples implanted in

the distal femur of a rabbit.

The Ti-Por[®] surface, thanks to its three-dimensional open porosity, ensures an optimal osteointegration of the implant and achieves long term stability.

a tarma had had a

dics.

tools.

Adler Ortho SpA Via dell'Innovazione 9 20032 Cormano, Italy Tel +39 02 6154371 Fax +39 02 615437222 www.adlerortho.com

T0009-E-00

Adler Ortho UK The Stables Tarvin Road Frodsham - Cheshire -WA6 6XN Tel: +44151 329 3372

0758142	Agilis Ti-Por [®] Cup	Size 42 mm	For heads from 32 mm
0758144	Agilis Ti-Por [®] Cup	Size 44 mm	For heads from 32 mm
0758246	Agilis Ti-Por® Cup	Size 46 mm	For heads from 36 mm
0758248	Agilis Ti-Por® Cup	Size 48 mm	For heads from 36 mm
0758350	Agilis Ti-Por® Cup	Size 50 mm	For heads from 40 mm
0758352	Agilis Ti-Por® Cup	Size 52 mm	For heads from 40 mm
0758454	Agilis Ti-Por® Cup	Size 54 mm	For heads from 44 mm
0758456	Agilis Ti-Por® Cup	Size 56 mm	For heads from 44 mm
0758558	Agilis Ti-Por® Cup	Size 58 mm	For heads from 48 mm
0758560	Agilis Ti-Por® Cup	Size 60 mm	For heads from 48 mm
0758562	Agilis Ti-Por® Cup	Size 62 mm	For heads from 48 mm
0758564	Agilis Ti-Por® Cup	Size 64 mm	For heads from 48 mm
0758566	Agilis Ti-Por® Cup	Size 66 mm	For heads from 48 mm

0513001	Modular conical connector 12/14	SHORT
0513002	Modular conical connector 12/14	MEDIUM
0513003	Modular conical connector 12/14	LONG
0513004	Modular conical connector 12/14	EXTRA LONG

0514281	Head ceramic Delta 12/14	DIAM 28	SHORT
0514282	Head ceramic Delta 12/14	DIAM 28	MEDIUM
0514283	Head ceramic Delta 12/14	DIAM 28	LONG
0514321	Head ceramic Delta 12/14	DIAM 32	SHORT
0514322	Head ceramic Delta 12/14	DIAM 32	MEDIUM
0514323	Head ceramic Delta 12/14	DIAM 32	LONG
0514361	Head ceramic Delta 12/14	DIAM 36	SHORT
0514362	Head ceramic Delta 12/14	DIAM 36	MEDIUM
0514363	Head ceramic Delta 12/14	DIAM 36	LONG
0514401	Head ceramic Delta 12/14	DIAM 40	SHORT
0514402	Head ceramic Delta 12/14	DIAM 40	MEDIUM
0514403	Head ceramic Delta 12/14	DIAM 40	LONG
0514441	Head ceramic Delta 12/14	DIAM 44	SHORT
0514442	Head ceramic Delta 12/14	DIAM 44	MEDIUM
0514443	Head ceramic Delta 12/14	DIAM 44	LONG
0513480	Modular head ceramic delta	DIAM 48	

Manufactured by Adler Ortho 0426

Bibliography

1,Cuckler et al. Large Vs small femoral heads in metal on metal total hip arthroplasty. J Arthroplasty, vol 19, issue 8, Suppl 3, Dec 2004: 41-44

2,Peters et al. Reduction in early dislocation rate with large diameter femoral heads in primary THA, J Arthroplasty, Vol 22, Issue 2, Feb 2007:312

3,Howie et al. A randomised controlled trial of large metal on highly cross-linked polyethylene in primary and revision THA, 40th Advances ib Arthroplasty 202, Cambridge, MA, 2010

4. R.I.P.O. Report 2010

5. D'antonio et al. Ceramic Bearings for THA Have high Survivorship at 10 years. CORR 2011

6. Lee et al. Alumina-onalumina THA: a concise followup at a minmum 10 years, of a previous report. JBJS Am 2010; 92:1715-9

 Mesko et al. Ceramic-on-ceramic hip outcome at a 5 to 10 years interval has lived up to its expectations?
J Arthroplasty 2011;26:172-7 8. Steppacher et al. Absence of osteolysis in uncemented alumina Ceramic-on Ceramic THA in patients younger than 50 years after 2 to 14 years. Semin Arthroplasty 2011;22:248-53

9. Kuntz et al. Validation of a new high performance Alumina Matrix Composite for use in Total Joint Replacement. Seminars in Arthroplasty, 2006;17:141-145

10. Pacharapol et al. Cementless Hemispheric Porous-Coated Sockets Implanted with Press-Fit Technique without Screws: Average Ten-Year Follow-up, JBJS Am 2002; 84; 1195:1200

11. Bizot et al. Hybrid alumina total hip arthroplasty using a press-fit metal-backed socket in patients younger than 55 years. A 6 to 11 year evaluation. J Bone Joint Surg [Br] 2004;86-B:190-4